Largest Triple Product Third Post in Java

In this post we will revisit a practice question Largest Triple Products. Not sure if today this question would be of interest to Facebook and /or to Meta Platforms technical job seekers.

My original post Largest Triple Products was superseded by Largest Triple Products – Revisited and by this latest post.

The motivation for this post came from a question left by Brent Boyer which suggested an implementation for the function of interest. I have included it in this post as `findMaxProduct3`. Continue reading “Largest Triple Product Third Post in Java”

Fibonacci Numbers in C++

In this post we will write a couple functions to generate Fibonacci Numbers using the C++ programming language and the Visual Studio 2022 IDE, on a Windows 11 computer.

The motivation came from the on-line course C++20 Fundamentals by Paul J. Deitel, included in the O’Reilly Learning Platform offered by the Association for Computing Machinery.

C++20 for Programmers
by Paul Deitel and Harvey Deitel
Format:	        Paperback
Language:	    English
ISBN:	        0136905692
ISBN13:	        9780136905691
Release Date:	March 2022
Publisher:	    Pearson Education
Length:	        1008 Pages

I have preordered the new book associated with the course on Amazon. Hopefully it should arrive next month. Continue reading “Fibonacci Numbers in C++”

LeetCode 111. Minimum Depth of Binary Tree in Java

In this post we will solve LeetCode 111. Minimum Depth of Binary Tree problem using Java and the VSCode IDE on a Windows computer. Not that it matters, but I am using Windows 11.

Given a binary tree, find its minimum depth.

The minimum depth is the number of nodes along the shortest path 
from the root node down to the nearest leaf node.

Note: A leaf is a node with no children.

Constraints:

o The number of nodes in the tree is in the range [0, 10^5].
o -1000 <= Node.val <= 1000

Related Topics:

o Tree
* Depth-First Search
* Breadth-First Search
o Binary Tree

We are given the root of a binary tree and are asked to find the minimum depth of the tree. A couple years ago we solved in this post Maximum Depth of a Binary Tree.

The definition of minimum depth is provided in the requirements for the problem at hand. Continue reading “LeetCode 111. Minimum Depth of Binary Tree in Java”

LeetCode 295. Find Median from Data Stream in Java

In this post we will try to solve the LeetCode 295. Find Median from Data Stream problem using the Java programming language and the VSCode IDE on a Windows computer.

The median is the middle value in an ordered integer list. 
If the size of the list is even, 
there is no middle value and the median is the mean of the two middle values.

For example, for arr = [2,3,4], the median is 3.
For example, for arr = [2,3], the median is (2 + 3) / 2 = 2.5.

Implement the MedianFinder class:

o MedianFinder()
	initializes the MedianFinder object.
o void addNum(int num)
	adds the integer num from the data stream to the data structure.
o double findMedian()
	returns the median of all elements so far. 
	Answers within 10-5 of the actual answer will be accepted.
	
Constraints:

o -10^5 &lt;= num &lt;= 10^5
o There will be at least one element in the data structure before calling findMedian.
o At most 5 * 10^4 calls will be made to addNum and findMedian.

Related Topics:

o Two Pointers
o Design
o Sorting
* Heap (Priority Queue)
o Data Stream

In a nutshell the class needs to process integers in the specified range and at different points we can be asked to return the current Median. As a brute force approach, I tried sorting. I did not submit such an approach because it is quite expensive (slow) and the problem is rated Hard by LeetCode. Continue reading “LeetCode 295. Find Median from Data Stream in Java”

HackerRank Largest Permutation in Java

In this post we will be solving the HackerRank Largest Permutation problem using the Java programming language, the VSCode IDE and a Windows computer.

You are given an unordered array of `unique integers` incrementing from 1.
You can swap any two elements a limited number of times.

Determine the largest lexicographical value array that can be created 
by executing `no more` than the limited number of swaps.

Constraints

o 1 <= n <= 10^5
o 1 <= k <= 10^9

We are given a list of unique integers incrementing from 1. We can swap two values at a time up to a number `k`. We need to return the largest possible permutation in the list. Continue reading “HackerRank Largest Permutation in Java”

LeetCode 307. Range Sum Query – Mutable in Java

In this post we will tackle the LeetCode 307. Range Sum Query – Mutable problem using the Java programming language and the VSCode IDE on a Windows computer. Unless you have a good reason (i.e., keep test code and solution on the same source code) my suggestion is to solve the problem using the online IDE provided by LeetCode.

Given an integer array nums, handle multiple queries of the following types:

o Update the value of an element in nums.
o Calculate the sum of the elements of nums between indices left and right inclusive 
  where left <= right.

Implement the NumArray class:

o NumArray(int[] nums)
	Initializes the object with the integer array nums.
	
o void update(int index, int val)
	Updates the value of nums[index] to be val.
	
o int sumRange(int left, int right) 
	Returns the sum of the elements of nums between indices left and right inclusive (i.e. nums[left] + nums[left + 1] + ... + nums[right]).
	
Constraints:

o 1 <= nums.length <= 3 * 10^4
o -100 <= nums[i] <= 100
o 0 <= index < nums.length
o -100 <= val <= 100
o 0 <= left <= right < nums.length
o At most 3 * 10^4 calls will be made to update and sumRange.

Related Topics:

* Array
o Design
o Binary Indexed Tree
* Segment Tree

We are given an int[] and asked to perform two operations as part of a class. Continue reading “LeetCode 307. Range Sum Query – Mutable in Java”